
Andreas Broeckmann

Runtime Art: Software, Art, Aesthetics
http://runtimeart.mi2.hr/TextAndreasBroeckmann

I. Software as Art

For a long time, computer software has been understood as a purely functional element
of digital technology. Only since the late 1990s, it has come under the scrutiny of media
theoretical and cultural research. After the age of garage-based computer bricoleurs,
followed by the massive distribution of personal computers that came with standard
proprietary software but without the necessary media competency, the last years have
been characterised by a growing 'do it yourself' culture where programmers cooperate
internationally on writing free software, and where musicians, visual artists, literary
critics and architects are increasingly acquiring programming know-how.

At the same time, we see the rise of a generation of media critics who are equally
familiar with the Internet's technology, standards and politics, and with the marketing
and techno-politics of computer hard- and software. The debates of these media critics
show that software is a medium and a cultural artefact that is being design in a specific
way which carries a particular socio-cultural meaning. In analogy to the cultural
analysis of technology as it has emerged from social historiography over the past
decades, we can observe the exploration of a technical medium being investigated with
regard to the social and economic conditions of its development and application.

Since 2001, the Berlin-based international media art festival, transmediale, has been
committed in its programme to the cultural and artistic dimensions of software. The
transmediale was the first festival to award a special prize for software art, and it has
hosted a whole series of discussions and lectures in order to foster the dialogue between
programmers, artists, sociologists and media researchers. This initiative is not aimed at
installing software art as yet another independent art category, but is meant as a
heuristic intervention that seeks to stimulate the discourse in this important socio-
cultural field. It raises the question in how far software art can be described as a form of
'autonomous' artistic practice, autonomous that is of the normal functional and
utilitarian requirements of software, and what might be the aesthetic potential of the
creative practice of programming.

In a text developed from their original jury statement, Florian Cramer and Ulrike
Gabriel, who were members of the first Software-Jury of transmediale.01, put it like
this: 'Coding is a highly personal activity. Code can be diaries, poetic, obscure, ironic or
disruptive, defunct or impossible, it can simulate and disguise, it has rhetoric and style,
it can be an attitude. Such attributes might seem to contradict the fact that artistic
control over generative iterations of machine code is limited, whether or not the code
was self-written. But unlike the Cagean artists of the 1960s, the software artists we
reviewed seem to conceive of generative systems not as negation of intentionality, but
as balancing of randomness and control. Program code thus becomes a material with
which artists work self-consciously. Far from being simply art for machines, software
art is highly concerned with artistic subjectivity and its reflection and extension into
generative systems.'

Most of what constitutes software art today, belongs in the field of media art, in so far
as it is concerned with the formulation of aesthetic modes of expression, with the
expansion of the artistic field, and with the articulation of the shifting relationship of
human and medium, or human and machine. Software programming will, not dissimilar
to photography, video and the Internet, move from a status of novelty, on to being one
more medium which artists can make use of according to their individual taste,
expressive needs and technical faculties. A software art exhibition will then make as
much and as little sense as an exhibition dedicated to photographs, or to video art.

II. Software as Culture

Software has by now come into view as a cultural technique whose social and political
impact ought to be studied carefully. To the extent that social processes rely on software
for their execution - from systems of e-government and net-based education, online
banking and shopping, to the organisation of social groups and movements -, it is
necessary to understand the procedural specificities of the computer programmes
employed, and the cultural and political 'rules' coded into them. The ?killer apps? of
tomorrow may, as Howard Rheingold claims, not be 'hardware devices or software
programs but social practices'. Yet, these social practices will increasingly be
determined by software configurations of the available infrastructure and the degrees
and types of latitude that they offer. Aspects of software culture - a terrain that
encompasses software development as well as the wide and multi-facetted field of
software application - are being articulated by speculative and artistic software projects.

The term 'social software' has been used by Matthew Fuller, Graham Harwood, and
others, to describe a type of software that consciously engages the social aspects of its
application. Whereas a programme like MS Word, which Fuller has carefully disected
in an extensive analysis, tends to conceal the rules and assumptions that served to
constitute its structure, social software addresses the more or less specific social context
of its application, whether in the form of the Linker software by Mongrel that offers an
easy-to-use functionality for multimedia production, or in the online communication
platforms that support, for instance, collaborative software and media development and
that can easily be tweaked to meet the requirements of a certain co-producer
community.

For almost a decade, the Nettime mailing list has been an active, international forum for
the discussion of software-related cultural and political issues. In a seminal essay posted
on Nettime, Behind the Blip, Fuller talks about key aspects of social software and also
refers to the Californian researcher Ellen Ullman who has worked on software
development as a distinctly social practice for several years. Important practical and
theoretical work in this field has also been done by the Amsterdam-based Society for
Old and New Media, De Waag, whose software development projects have engaged the
needs and possibilities of different user groups by way of models for a 'participatory
software design'. In cooperation with De Waag, the New Delhi-based media and
communication centre Sarai has also worked on both the practical issues of social
software development, and on the critical reflection of software culture on their online
Reader-List and in the Reader print publications. While Nettime has often carried
postings articulating differences between European and US media cultures, Sarai has,
importantly, helped to raise awareness for the differences in software cultures, esp. with
regard to developments in South Asia.

In his essay, Behind the Blip (now also available in a book of the same title, published
by Autonomedia), Fuller distinguishes social software from 'critical' and 'speculative'
software, critical software being 'software designed explicitly to pull the rug from
underneath normalised understandings of software'. It critically engages with existing
software programmes and mutates or critically analyses them. In contrast, 'speculative
software' comes closest to what can be understood as an artistic approach to software: it
is, as Fuller writes, 'software that explores the potentiality of all possible programming.
It creates transversal connections between data, machines and networks. Software, part
of whose work is to reflexively investigate itself as software. Software as science
fiction, as mutant epistemology. Speculative software can be understood as opening up
a space for the reinvention of software by its own means.'

In comparison, the notion of 'software art' is an attempt to describe a practice that is
artistic, non-functionalist, reflexive and speculative about the aesthetics and politics of
software, and that takes computer programming as the material proper of the artistic
practice. The term is especially used for works of generative art whose main artistic
material is program code, or which deal with the cultural understanding of software.
Thus, software is not understood as a functional tool serving the 'real' artistic work, but
as a generative means for the creation of machinic and social processes. Software art, in
the understanding of researcher, software activist and co-editor of the Nettime Unstable
Digest, Florian Cramer, can be the result of an autonomous and formal creative practice,
but it can also refer the cultural and social meaning of software, or reflect on existing
software through strategies like collage or critique.

Like transmediale, other exhibition and curatorial projects (Generator in the UK, the ars
electronica's CODE festival, the exhibition 'I Love You' on computer viruses, a.o.) have
sought to circumscribe a field of artistic work that deals with the aesthetic potential of
software. Most notably, the festival Read_Me (Moscow, Helsinki and Arhus) has been
exclusively devoted to software art and has led to the establishment of the Runme.Org
collaborative online database for software art projects. The CODeDOC project has
presented software developed by artists and has included comments and documentation
of the programming process and has thus attempted to introduce an aspect of
transparency and the idea of Open Sources into the discourse on software by and for
artists, an issue which is also being addressed in discussions about 'open content' and
the 'creative commons' licenses for artistic productions. In contrast, Free Software
developers like Jaromil, who is pursuing a.o. the MuSE project for a free audio
streaming software, insist on the necessity to resist proprietary licensing models
altogether.

It is worth noticing that the Free Software and open source models have increasingly
also influenced art-related software productions in independent labs like the V2_Lab,
the Ars Electronica Center or the MIT Media Lab. The copyright issue, which Georg
Greve, president of the Free Software Foundation Europe, suggests should not be
referred to as 'Intellectual Property Rights' but as 'the question of industrial control of
information', will become crucial for the information and knowledge society and must
be addressed experimentally in the arts and culture sector, like in the recent exhibition
Illegal Art which presented some of the ridiculous results of tight copyright laws.

The issues of interface design and interaction have been among the prime concerns of
digital art production, yet, while software has mostly been treated as a tool towards
realism in virtual environments, software art projects like I/O/D's Webstalker, Jodi's
Wrong Browers or Joan Leandre's retroYou R/C have offered irritating and enlightening
insights into the construction of digital realism by means of software.

The Internet, while accelerating the demise of utopian hopes once invested in its
liberatory potential, has also become the site of a multiplicity of collaborative forums,
whether on mailing lists, Wikis, in weblog communities, etc. For the Net in general,
software developments around Java, the Linux system, and online publishing forums
like Slashdot or Freshmeat, have all had shares in a complex and vibrant cultural
development. For software art in particular, a.o., the eu-gene and linart mailing lists, are
continuing to play an important role. The social and theoretical implications of these
kinds of online cooperation have been investigated by projects of the interdisciplinary
artists group Knowbotic Research for over ten years, most notably in the IO_dencies
series in the mid-90s, but also in the more recent collaborative hacking projects.
Similarly, the Italian EpidemiC collective explores new forms of software based online
activism in their Anti-Mafia project.

Collaborative and activist projects like these frequently also involve debates about
network security, ironically referenced by Technology To The People's Phoney(TM),
and about privacy issues which were tackled by LAN's Tracenoizer project and, more
recently, by Franz Alken's Machines Will Eat Itself, both of which instigate a deliberate
erosion of relations between human individuals and their online data bodies.

If anything, software art projects like these should indicate the necessity to delve more
deeply into the cultural specificities of software development and application. Software
needs to be understood as a set of digital media which need to be explored regarding
their specificity, their political and cultural dimensions. An immense amount of
knowhow already exists in the open source and free software development
communities, as well as in hacker and art coder circles. It will be crucial to devise ways
how this knowhow can be interwoven, at times pooled, and exploded across the entire
field of software development and usage.

III. Notes about the Aesthetics of Software Art

When talking about software and art, we have to speak about aesthetics, that is engage
the value systems that inform our experience of art, and our perceptions in general.
References have been made to the traditions of Fluxus, Conceptual Art, or Net Art, each
of which implies a set of assumptions about the ways in which to judge the artistic
quality of artworks. Over the last 200 years, European culture has seen aesthetics of
beauty, aesthetics of the sublime, aesthetics of ugliness, and aesthetics of formal order.
But this history teaches us, that there are alternative ways of approaching software-
based artworks than Max Bense's extremely formalistic "Generative Aesthetik" which
he formulated in the 1960s. For instance, it would also be interesting to revisit the
debates about Realism vs Formalism between Lukacs and Brecht in the 1930s in this
respect, if only to sharpen our perception for the level of critique that can be brought to
significant artworks.

My own idea of art practice, which I also bring to this field of software-based work, is
opposed to bland visualisations and translations from one formal system to another. I
believe that we need a strong notion of what constitutes art. For me, art is about the
transgression of boundaries, about making familiar experiences strange, about
dramatising what pretends to be innocent, and about exploring the virtualities, the
potentialities of technologies and human relationships.

In many cases, art projects relate to or express their cultural environment in very
restrained or benign, at times even banalising ways. This is not only an issue in
software-based art, but of digital art practice in general - it often tends to be affirmative
of the technology, uncritical of its corporate politics and superficial in its formulations
and expressions. Where is the desire for excess in software-based art? Where do we find
the surplus, the surprise, that which we do not know yet and that is not already legible
in the software code or the technical dispositif that artists prepare so ardently?

IV. Runtime Art

For the exhibition 'Runtime Art', we have selected a number of projects that engage
specifically with one aspect of software, i.e. its execution in the 'runtime' of the
computer processor, and thus the close connection between code execution and
aesthetics.

A classic piece in this respect is Every Icon by John F. Simon, which exhibits both the
precise clock-speed of the computer that runs through the iterations of black and white
pixels in a binary grid, and the impossibility of a comprehensive representation of
reality by a computer which, quite apparently, already fails in the simple task of
offering all possible computer icons in a reasonable amount of time. While 'Every Icon'
dramatises the execution of code by the sheer tedium of its almost endless process,
Vexation1 by Antoine Schmitt achieves a more singular tension by giving the
impression of a hesitant, self-conscious computer program that 'drags its feet' as it has to
decide which path a white dot should take from one pre-determined side of the rectangle
to the next. Despite the clearly given determinacy, the program still appears to be
caught in a subjective decision-making process.

For his project Micro Images, Casey Reas has developed a complex set of algorithms
that send the generative graphics into unpredictable and hugely complex configurations.
Here, 'runtime' is the medium of excessive machine-based differentiation. A similar task
is approached very differently in the project Electric Sheep by Scott Draves, a screen-
saver program that takes its calculating power from a distributed network of computers
running the software generating the graphics which can be individually designed and
viewed. The 'excess of runtime' is also explored in Mandl & Krautgasser's Pedigree
which uses the actual written code to translate the story of Oedipus into an algorithmic
language which, when executed, offers a dynamic representation of the Oedipal drama
of Love and Death in multiplying triangulations of relationships.

The question of the interface through which human users can interact with software-
based systems has been approached very elegantly by Golan Levin. His Audio-Visual
Environment Suite (AVES) is a series of tools for the gestural creation and
manipulation of sonic and visual structures. More analytical in its approach is the
Webstalker by I/O/D, one of the first projects to deconstruct the notion of the web-

browser: the Webstalker offers several ways of looking at the code and link structure of
a website, giving access to all the information that a regular browser would also show,
and more, but in a way that is formal and purely structural. While the Webstalker was
designed in opposition to existing representational models, Minitasking by
Schoenerwissen/OfCD had to invent its own representational paradigms for a structure
that had not been visualised before, i.e. the Gnutella file-sharing network. Minitasking
combines the function of a crawler with that of a network scanner, offering a complex
image and a functional interface to an ongoing, internet-based communication system.

Such representational models are called into questions by Auto-Illustrator, a software
package developed by Signwave and modelled on existing vector graphics programs.
Unlike those, however, 'Auto-Illustrator' exhibits a distinct autonomy in the
visualisation of commands and movements of the user, which it frequently translates
into crazy and uncontrolled results, thus highlighting the fundamental difference
between intention, user-interaction, and result. A similar deconstructive approach is
taken by Joan Leandre in the retroYou R/C project which, on its different racing game
levels, employs increasingly corrupted rules for the representation of the virtual
environment in which the race is taking place. True to its slogan, "F*ck the gravity
code!", it pinpoints both the constructedness of such virtual 3D-spaces, and the
limitations of interaction in non-rational spaces.

Finally, a project by Robert Luxemburg exemplifies the political dimension of digital
data and their execution. The Conceptual Crisis of Private Property as a Crisis in
Practice is a screen-shot, i.e. a digital image, whose code can also be executed as a
program - when executed, the file produces the novel 'Cryptonomicon' by Neal
Stephenson. The project is a riddle about the different representational and juridical
layers at which coded, and thus also encoded intellectual property, can exist. Here,
'runtime' is not only the condition, but the problematic medium, interface and gateway
to the borders of representation and legality.

This selection of works covers the particular field of generative art and is in no way
exhaustive, and certainly not for all the ways in which software is currently being
explored as a medium and theme of artistic practice. These include a whole range of
projects, from the exploration of code as poetry, through the psychogeographic
programming of cities by socialfiction.org, to the real-time programming environments
developed for live performance and interaction tasks. In this entire field, artists are no
longer just working within existing technological paradigms, but through their creative
programming efforts, they are actually trying to push the boundaries of what software
means as a social and cultural technique. The cooperation between artists and
programmers is often very close, and in many of the examples presented here, the artists
have in fact done the programming themselves.

The exhibition 'Runtime Art' is an exploration into the generative aesthetics of software.
Rather than being conclusive, it hopes to open up further debate about the artistic
potentials of computer programming and digital code as cultural artifacts, and
techniques.

Selected projects and exhibitions:

transmediale Festival, Berlin - http://www.transmediale.de

Kontrollfelder Exhibition, Dortmund - http://art.net.dortmund.de
I Love You Exhibition, Frankfurt/M. - http://www.digitalcraft.org
Digital is not Analogue Festival, Bologna - http://www.d-i-n-a.net
Read_Me Festival, Moskau/Helsinki/Arhus - http://www.runme.org
Generator Exhibition, Liverpool - http://www.generative.net/generator
Art Bit Exhibition, Tokio - http://www.art-bit.jp
Electrohype Festival (2002), Malmö - http://www.electrohype.org
Ars Electronica Festival (2003) - http://www.aec.at
CODeDOC Exhibition - http://www.aec.at/en/festival/programm/codedoc.asp

